skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zanca, Federica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Metal–organic frameworks (MOFs) are highly porous and versatile materials studied extensively for applications such as carbon capture and water harvesting. However, computing phonon-mediated properties in MOFs, like thermal expansion and mechanical stability, remains challenging due to the large number of atoms per unit cell, making traditional Density Functional Theory (DFT) methods impractical for high-throughput screening. Recent advances in machine learning potentials have led to foundation atomistic models, such as MACE-MP-0, that accurately predict equilibrium structures but struggle with phonon properties of MOFs. In this work, we developed a workflow for computing phonons in MOFs within the quasi-harmonic approximation with a fine-tuned MACE model, MACE-MP-MOF0. The model was trained on a curated dataset of 127 representative and diverse MOFs. The fine-tuned MACE-MP-MOF0 improves the accuracy of phonon density of states and corrects the imaginary phonon modes of MACE-MP-0, enabling high-throughput phonon calculations with state-of-the-art precision. The model successfully predicts thermal expansion and bulk moduli in agreement with DFT and experimental data for several well-known MOFs. These results highlight the potential of MACE-MP-MOF0 in guiding MOF design for applications in energy storage and thermoelectrics. 
    more » « less